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Abstract 
For century, there has been no change in 

the fundamental structure of the electrical power 

grid and vehicle networks. Current hierarchical, 

centrally controlled grid of the electrical grid is 

not best for growing demand. To address the 

challenges of the existing power grid, the new 

concept of smart grid and smarter planet are 

under research. The smart grid can be considered 

as a modern electric power grid infrastructure 

for enhanced efficiency and reliability through 

automated control, high-power converters, 

modern communications infrastructure, sensing 

and metering technologies, and modern energy 

management techniques based on the 

optimization of ondemand, energy and network 

availability. While current power systems are 

based on a solid information and communication 

infrastructure, the new smart grid needs a 

different and much more complex one, as its 

dimension is much larger and needs utmost 

performance. This paper addresses critical issues 

on smart grid technologies primarily in terms of 

information and communication technology 

(ICT) issues and opportunities. The main 

objective of this paper is to provide a 

contemporary look at the current state of the art 

in smart grid communications as well as to 

discuss the still-open research issues in this field. 

It is expected that this paper will provide a better 

understanding of the technologies, potential 

advantages and research challenges of the smart 

grid and provoke interest among the research 

community to further explore this promising 

research area. 
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I.  INTRODUCTION  

Electric power grid contains three main 

subsystems, i.e., power generation, power 

transmission &   distribution, and customer facilities. 

Recently, wireless sensor networks (WSNs) have 

been considered as a promising technology that can 

enhance all these three subsystems, making WSNs 

an important component of the smart grid. However, 

environmental noise and interference from nonlinear 

electric power equipments and fading in harsh smart 

grid environments, makes reliable communication a 
challenging task for single-channel WSNs for smart 

grid applications. To improve network capacity in  

 

smart grid environments, multi-channel WSNs might 

be the preferred solution while achieving 

simultaneous transmissions through multiple 

channels. In this paper, the performance of 

multichannel WSNs is investigated for different 

spectrum environments of smart power grid, e.g., 

500kV outdoor  substation, main power control 

room and underground network transformer vaults. 

In addition, we also introduce potential applications 

of multi-channel WSNs along with the related 

technical challenges. Here, our goal is to envision 
potential advantages and applications of multi-

channel WSNs for smart grid and motivate the 

research community to further explore this 

promising research area. Sensor network web 

services have recently emerged as promising tools to 

provide remote management, data collection and 

querying capabilities for sensor networks. They can 

be utilized in a large number of fields among which 

Demand- Side Energy Management (DSEM) is an 

important application area that has become possible 

with the smart electrical power grid. DSEM 
applications generally aim to reduce the cost and the 

amount of power consumption. In the traditional 

power grid, DSEM has not been implemented 

widely due to the large number of households and 

lack of fine-grained automation tools. However by 

employing intelligent devices and implementing 

communication infrastructure among these devices, 

the smart grid will renovate the existing power grid 

and it will enable a wide variety of DSEM 

applications. In this paper, we analyze various 

DSEM scenarios that become available with sensor 

network web services. We assume a smart home 
with a Wireless Sensor Network (WSN) where the 

sensors are mounted on the appliances and they are 

able to run web services. The web server retrieves 

data from the appliances via the web services 

running on the sensor nodes. These data can be 

stored in a database after processing, where the 

database can be accessed by the utility, as well as the 

inhabitants of the smart home. We show that our 

implementation is efficient in terms of running time. 

Moreover, the message sizes and the implementation 

code is quite small which makes it suitable for the 
memory-limited sensor nodes. Furthermore, we 

show the application scenarios introduced in the 

paper provide energy saving for the smart home. 

Smart Grid is aimed to incorporate monitoring, 

analysis, control and communication capabilities to 

improve reliability and energy efficiency. However, 

currently there is no enough sensor to provide 



 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)                 ISSN: 2248-9622              www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.930-963 

931 | P a g e  

information interface for the implementation of 

smart grid. Therefore, new types of sensors should 

be deployed to assist the implementation of smart 

grid. This paper proposes a novel scheme, in which 

new type of fiber optic sensors (as compared with 

traditional Farady effect based fiber optic sensor 

used in power system instrumentation) are used to 
provide multiple types of information for smart grid. 

The new Fiber Gragg Gratting (FBG) is 

advantageous in that it can collect variant types of 

information and can form a sensor network. A 

transmission line monitoring system with distributed 

fiber optic senor setwork is designed, and the 

procedures to evaluate the status of the overhead 

transmission line (such as sag, vibration, and 

galloping) are proposed. A testing setup is built at 

laboratory, and it is shown that the FBG sensor is 

capable of obtaining the comprehensive information 

for evaluating the status of the overhead 
transmission line. 

 

A. Converger fiber wireless access networks 

Converged fiber-wireless (FiWi) access 

networks may be viewed as the endgame of 

broadband access. They hold promise to replace 

commuting with teleworking, which, taking the 

United States as an example, could lead to dramatic 

savings of 136 billion vehicle travel miles annually 

in the US by 2020 and 171 billion miles by 2030 [1]. 

At the downside, FiWi networks and access 
networks in general suffer from a major 

shortcoming. In today’s Internet, the total energy 

consumption is dominated by access networks and 

as access rates of tens of Mbit/s become 

commonplace, it will be necessary to improve their 

energy efficiency in order to avoid a significantly 

increased greenhouse footprint of the Internet [2]. 

Previous work on ―green‖ communications networks 

focused only on the reduction of their own energy 

consumption and greenhouse gas emissions. It is 

only recently that research has begun to study the 

role of green access networks and adopt them also in 
other relevant sectors to enhance the efficiency of 

energy use, resulting in a dramatically increased 

overall CO2 reduction across multiple economic 

sectors [3]. In this paper, we explore the 

opportunities and challenges of enhancing FiWi 

broadband access networks with fiber optic and 

wireless sensors and adopting the resultant fiber-

wireless sensor networks (Fi-WSNs) to convert the 

traditional electric power grid, the largest man-

created CO2 emission source, into the future smart 

grid. Today’s power networks have to increase their 
utilization and become more efficient without 

depleting our ever declining natural resources to 

meet the increasing electricity demand of a rapidly 

growing global population from 6.1 billion in 2000 

to 7.5 billion by 2020, leading to a staggering 75% 

increase in power consumption by 2020. Toward this 

end, the current power grid has to be transformed 

into the smart grid by incorporating sophisticated 

sensing, monitoring, information, and 

communications technologies to provide better grid 

performance and support a wide range of additional 

services to consumers. The remainder of the paper is 

structured as follows. Section 2 briefly reviews the 

vision of smart grid and elaborates on its anticipated 
benefits and possible pitfalls. In Section 3, we 

propose a Fi-WSN based smart grid communications 

infrastructure and elaborate on is implementation 

models.  

 

In the literature, demand management have 

been studied in several works. In [10], the authors 

propose cycling on and off refrigerators for 

frequency regulation services. The European 

SMART-A project discusses delaying the cycles of 

appliances according to the local power generation 

capacity of a house [11]. Aggregated residential 
demand response programs have also been 

considered in [12]. A residential load control (RLC) 

scheme that is suitable for grids with real-time 

pricing is proposed in [4]. The authors focus on an 

automatic controller that is able to predict the price 

of electricity during the scheduling horizon and 

schedule appliances to provide an optimum cost and 

waiting time within that horizon. Our optimization 

based solution is different than [4], as in our scheme, 

consumers can choose an upper limit for the waiting 

time at the setup time and we make use of TOU rates 
and exploit communications. In [5], the authors 

propose a decision-support tool (DsT) for smart 

homes. A PHEV, space heater, water heater, pool 

pump, and a PV system are scheduled based on 

various TOU tariffs by using the particle swarm 

optimization technique. In [5], the communication 

among the distributed resources and consumers has 

not been considered, whereas in our scheme, the 

controller and the users communicate through 

appliance interfaces. In [6], several management and 

control schemes are proposed for microgrids and for 

single houses. The authors use a neural network-
based prediction approach to predict the day-ahead 

demand. According to the predicted demand, the 

schedule of the microCHP device in each house is 

optimized. In addition, local appliances are 

controlled to optimize electricity import/export of 

the home. Our optimization-based residential energy 

management is different than [6] since we aim to 

minimize the cost of electricity based on TOU rates. 

Our work relies on demand shifting rather than 

scheduling generation and consumption to attain a 

balance. Moreover, in our paper, we assume that 
each house makes independent decisions unlike a set 

of houses being controlled by a steering signal from 

a global controller as described in [6]. In [7], the 

authors focus on reducing the peak-to-average 

electricity usage ratio by finding an optimal 

consumption schedule (OCS) for the subscribers in a 

neighborhood. The authors employ a game theoretic 
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approach. In [13], the authors propose an energy 

management protocol which allows consumers to set 

a maximum consumption value and the residential 

gateway is able to turn off the appliances that are in 

standby mode, or overwriting the user defined 

programmes with lessenergy consuming ones. 

However, defining a maximum value 
 

II. OPTIMIZATION BASED RESIDENTIAL 

ENERGY MANAGEMENT (OREM) 

We propose an LP model to minimize the 

total cost of electricity usage at home. Despite that 

home appliances consume the same amount of 

energy regardless of the time they are switched on, 
in the smart grid, as a result of the TOU tariffs, the 

hours when the appliances are used affect the cost of 

energy. In the OREM scheme, we assume that one 

day is divided into equal length consecutive 

timeslots which have varying prices for electricity 

consumption similar to TOU tariff. Our objective 

function minimizes the total energy expenses by 

scheduling the appliances in the appropriate 

timeslots. In the LP model, consumer requests are 

given as an input and an optimum scheduling is 

achieved at the output. In this application, the 

information is provided by the Schneider Electric 
Smart meter PM800, Figure 2, which has several 

capabilities that include: 

• Power quality compliance monitoring Validate that 

power delivered or received complies with the 

EN50160 international power quality standard. 

• Disturbance and harmonic analysis Detect, 

troubleshoot and resolve power anomalies that can 

affect sensitive manufacturing, production, data or 

laboratory processes and equipment. 

• Energy metering, cost allocation and subbilling 

Upload metered energy values to software to support 
utility bill verification, contract optimization and 

cost allocation or billing by department, area or 

process. 

• Demand and power factor control Trend and 

forecast energy and demand to help analyze usage 

patterns, compare load characteristics and manage 

energy costs. Manage demand or power factor using 

set point-triggered relays to control loads or 

capacitor banks. 

• Load studies and circuit optimization Optimize 

load curtailment and load preservation programs to 
drive down energy costs and improve system 

reliability. Reveal unused electrical system capacity. 

• Equipment monitoring and control Monitor the 

status or condition of breakers, generators or other 

equipment. Automatically or manually control 

equipment using on-board relays. 

• Preventive maintenance Track and alarm on 

equipment conditions that could indicate excessive 

wear, imminent malfunction or poor energy 

inefficiency. Verify that power distribution and 

mitigation equipment is operating reliably and 

within specified tolerances. 

• Integrated utility metering 

 

ACORD is a home appliance coordination 

scheme for the smart grid. ACORD allows for 

flexible start times for home appliances. In the 

ACORD scheme, the consumer turns on the 

appliance at any time regardless of peak hour 
concern. This consumer request generates a START-

REQ packet. The START-REQ packet contains the 

duration of the cycle of the appliance. This could be 

a washing cycle for a washer or the time required for 

the coffee maker to make the desired amount of 

coffee. START-REQ packet is sent to the EMU by 

wireless communication. Wireless communication 

may experience loss of connectivity due to 

obstructions such as walls or inhabitants. In a large 

house, EMU may be physically far from appliances. 

This means the EMU may not be within the reach of 

all appliances at one hop and multiple hops may be 
required for message delivery. In this case, an 

already deployed home area sensor network can be 

used to relay packets of the appliances. The sensor 

network can continue to work for its deployment 

purpose, such as inhabitant health monitoring or air 

conditioning for each individual inhabitant and at the 

same time it can relay energy management 

messages. Using a sensor network alleviates the 

need for A2A communication. A2A communication 

is challenging because appliance vendors may 

employ different standards which has been the 
common practice in the industry. EMU receives the 

START-REQ packet and schedules an available start 

time. It can also communicate with the smart meter 

and update the TOU rate and peak hour information. 

The EMU computes the waiting time as the 

difference between the next available start time and 

the consumer desired start time. The waiting time is 

sent by START-REP packet. EMU determines the 

waiting time as follows. If the consumer desired start 

time in the START-REQ packet is in off-peak hours 

and there is no earlier request on that time, the 

waiting time is set to zero. If there has been earlier 
requests, EMU schedules the new request at the end 

of the previous request. EMU avoids to schedule 

start times in the peak hours. When the user desired 

start time or the scheduled start time falls between 

peak hours, they are shifted to off peak hours. EMU 

also avoids shifting appliance cycles to the next days 

to prevent bursty loads. The waiting time 

information is sent to the consumer for approval in 

the START-REP packet. The consumer may be 

willing to negotiate with the EMU and wait for some 

time. In this case, the consumer will benefit from 
lower energy bills. On the other hand, the consumer 

may need to start the appliance immediately. The 

decision is up to the consumer, EMUdoes not force a 

start time on the appliances because this could cause 

discomfort on the consumer side. The decision of the 

consumer is sent back to EMU in the 

NOTIFICATION packet. EMU uses the consumer 
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decision to reserve a time slot for the appliance and 

use this reserved time information for the scheduling 

of future requests. 

 

A. IEEE 802.15.4 based WSN 

The IEEE 802.15.4 [11] refers to the first 

two layers of the ISO/OSI stack protocol, i.e. the 
standard defines the physical layer (PHY) and 

medium access control (MAC) sub-layer 

specifications for supporting simple devices that 

consume minimal power and typically operate in the 

wireless personal area network (WPAN) of 10 m or 

in general in a short communication range. IEEE 

802.15.4 is a standard for PAN which is also 

characterized by low data rate and low cost. In IEEE 

802.15.4, all devices are divided into two categories: 

full function devices (FFDs) and refined function 

devices (RFDs) according to their capabilities. FFDs 

can initiate a WPAN and act as the coordinator of 
the WPAN, or can forward data and act as routers. 

At the physical layer, wireless links under 802.15.4 

can operate in three license free industrial scientific 

medical (ISM) frequency bands. These 

accommodate over air data rates of 250 kbps in the 

2.4 GHz band, 40 kbps in the 915 MHz band, and 20 

kbps in the 868 MHz. A total of 27 channels are 

allocated in 802.15.4, including 16 channels in the 

2.4 GHz band, available worldwide, 10 channels in 

the 915 MHz band, used in North America, and 1 

channel in the 868 MHz band for Europe. Many 
technologies based on the IEEE 802.15.4 standard 

have been deployed for WPANs. Among these, the 

ZigBee appears particularly suitable for the 

applicative domain under study. The ZigBee has 

been well accepted as industrial standard for 

wireless sensor networks because it allows good 

achievements in many application domains (i.e. 

environment monitoring, home network, industrial 

automation). ZigBee adopts IEEE 802.15.4 standard 

at its PHY and MAC layers and support lowrate 

WPANs. Its specifications add to the standard four 

main components: network layer, application layer, 
ZigBee device objects (ZDOs) and userdefined 

application objects which allows for customization 

and flexibility within the standard. At its core, 

ZigBee is a mesh network architecture. Its network 

layer natively supports as main topologies: star and 

tree typical networks and generic mesh networks, 

self-forming and self-healing networks. In particular, 

the ZigBee architecture identifies three kinds of 

devices: 

- A coordinator, which organizes the sensor network 

and maintains routing tables. 
- Routers, which can talk to the coordinator, to other 

routers and to reduced-function end devices. 

- End devices, which can talk to routers and the 

coordinator, but not to each other. 

The expected benefits deriving by the application of 

this communication architecture are: 

- Low cost: a typical ZigBee modem can be as low 

as $12 each in quantities as few as 100 pieces. 

This pricing provides an economic justification for 

extending wireless networking to even the simplest 

of devices. 

- Range and obstruction issues avoidance: the 

routers double as input devices and repeaters, to 
create a form of mesh network. In this way, if two 

network points are unable to communicate as 

intended, transmission is dynamically routed from 

the blocked node to a router with a clear path to the 

data's destination. This happens automatically, so 

that communications continue even when a link fails 

unexpectedly. The use of low-cost routers can also 

extend the network's effective reach. When the 

distance between the base station and a remote node 

exceeds the devices' range, an intermediate node or 

nodes can relay transmission, eliminating the need 

for separate repeaters without stopping the system 
operation. This long-term reliability is critical for 

many power automation systems that are expected to 

last 20–30 years once installed. 

 

B. Residential energy management 

Residential energy management has been 

neglected in the exiting power grid due to scalability 

concerns. However, in the smart grid, ICT 

technologies enable energy management for each 

individual residential unit. Utilities may remotely 

apply energy management in order to intentionally 
reduce peak load. This is generally meaningful when 

the grid faces a risk of failure but even though there 

is no failure risk, reducing the peak load is important 

because it results in less emissions and less 

expenses. For this reason, consumers may willingly 

reduce their peak consumption by the use of energy 

management schemes. In our residential energy 

management application, communication among the 

appliances and the energy manager uses Zigbee with 

short-range wireless links. Zigbee is a lowdata rate, 

short-range, energy-efficient wireless technology 

that is based on the IEEE 802.15.4 standard. It 
utilizes 16 channels in the 2.4GHz ISM band 

worldwide, 13 channels in the 915MHz band in 

North America and one channel in the 868MHz band 

in Europe and it can support data rates of 250 kbps, 

100kbps (available in IEEE 802.15.4-2006), 40 

kbps, and 20 kbps. Zigbee provides low power 

consumption due to its low duty cycle mechanism. 

Residential energy management scheme works as 

follows. When a consumer turns on an appliance, the 

appliance communicates with the energy manager by 

sending a STARTREQ packet. This packet contains 
the sequence number of the request, request 

generation time and the duration the appliance cycle. 

Energy manager computes a convenient start time 

for the appliance by considering the availability of 

the local energy generation and the price of 

electricity. The time interval between the convenient 

start time and the consumer requested start time is 
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called the waiting time. If the waiting time is above 

a threshold Wmax, then the appliance is started 

immediately to prevent accumulating the requests on 

one day. The waiting time is sent back to the 

appliance in a START-REP packet and it is 

displayed to the consumer via an LCD. The 

consumer may be willing to negotiate and wait for 
some time or she may need to start the appliance 

immediately. The energy manager does not force an 

automated start time because this could cause 

discomfort on the consumer side. Consumer decision 

is sent back to the energy manager in a 

NOTIFICATION packet. The algorithm for 

determining the waiting time is given in Algorithm 

1. If the consumer requested start time is in peak 

periods, the energy manager checks the availability 

of the local energy source, and if it is available then 

the waiting time is set to zero. When there is not 

enough local energy, the suggested start time is 
shifted to off peak hours. The packets of the energy 

management application is relayed by the WSHAN. 

The distance between the appliances and the energy 

manager may exceed the length of the Zigbee links 

and multiple hops may be required. Moreover 

construction type or interference on a link may 

necessitate multiple hops. In this case, the existing 

WSHAN in the smart home that has been initially 

set up for inhabitant health monitoring, air 

conditioning, etc, can be used to relay the packets of 

the energy management application. 
 

C. Key design aspects 

Radio Design: An 802.15.4 radio in 

ZigBee pro stack currently supports receiver 

sensitivity up to -100 dbm [3]. 

However to make it cognitive we require 

higher receiver sensitivity up to -114dbm as per the 

FCC regulation. The radio needs to operate across 

wide band to cover licensed bands. Reference [7] 

suggests several methods to do so. Also, a very 

crucial decision we need to make is about selecting 

dual or single radio architecture. As explained  
earlier updating channel back up list can be carried 

out independently without having quiet periods if we 

have dual antennas. 

Spectrum Sensor Selection: White space or PU 

activity detection depends on three key parameters: 

Time, frequency and location [8]. Physical layer 

enables us to create opportunity in time and 

frequency naturally. With the help of network layer, 

we can exploit the location dimension as well. 

Therefore we select multiple spectrum sensors 

across the network. A device when it joins the 
network automatically chooses to become a 

spectrum sensor when it does not listen to any DIO 

from spectrum sensor devices or coordinator. DIO 

stands for DAG Information Objects and DAG 

stands for Directed Acyclic Graph. Both DAG and 

DIO are to be discussed in detail in section III. If the 

device listens to DIO, then it would just be a non-

spectrum sensing node. However we need to keep in 

mind an important fact that the spectrum sensor 

selection always should happen while operating in a 

ZigBee channel, since usually in PU channels all 

devices would be in each other’s listening range and 

spectrum sensor selection logic would fail. 

 

D. Conditions to change the incumbent channel 

Frequency Agility (Channel Change): ZigBee pro 

stack has a dedicated network channel manager, 

usually the coordinator, which receives interference 

reports from other routers in the network. These 

routers keep track of failure counts. If the packet 

delivery success rate falls below 25% for 20 or 

greater messages transmitted by a node, then the 

node reports it to the networkmanager. Later, if the 

network manager decides to change channel it issues 

a notification to indicate the channel change [3]. 

 
Opening Joining Window: The coordinator needs 

to send a permit-join-request to all the routing 

capable devices in the network with a finite window 

period [3], during which, the network can add a new 

device. Whenever this happens all the nodes in the 

network need to move to a ZigBee channel picked 

from the common back up list and need to add the 

new device in that channel. If we do not have any 

ZigBee channel in our list, then we cannot add the 

new device. If the lists are not synchronized, the 

device with obsolete list would not participate in the 
joining process and soon after it realizes that it is on 

a wrong channel, it comes back to the previous 

channel. If network is still not established, the lost 

device needs to initiate a silent rejoin procedure 

which shall be discussed later. 

 

Primary User (PU) Detection: When a strong 

signal from PU arrives, then the whole 

communication would be disrupted and all the 

devices get into receive mode and moves to the next 

channel as per the backup list in its data base. When 

a weak PU is expected to be detected, it is similar as 
explained in the quiet period section. 

 

Channel Occupation Time Expiry: If none of the 

above scenarios (strong or weak PU detection) 

occurs then automatically the channel change takes 

place after COT=30 sec (see Table I) while 

operating in licensed band. 

 

F. Joining procedures: 

Normal Join/ New Device Join: A new device not 

belonging to any network sends beacon request and 
wait for beacons indicating that the network is 

accepting new association requests. It iterates this 

procedure across all 16 ZigBee channels until it joins 

a network. Now, when joining window opening is 

indicated by any coordinator, then all the devices 

currently in the network respond to the beacon 

requests by sending beacons. Say while a user enters 
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security code on the Coordinator communication 

module, all the existing devices in the network move 

to a common ZigBee channel picked from their 

channel back up list and they reply by sending 

beacons to new device beacon requests. Later if the 

new device joins the network after being validated, it 

calculates its DIO and then it sends a device 
announcement. It is a unicast message to the 

coordinator. When the announcement reaches the 

coordinator, the devices through the path would 

record the new device entry in their routing table 

according to the routing path [2]. A new device 

cannot enter licensed channels directly. Since their 

beacon requests can cause interference to the PU. 

Also the newly joined device needs to receive the 

current time, next quite period initiation time and 

serial number from the coordinator to ensure 

synchronization.  

 
Silent Join/ Rejoin: This kind of join occurs for a 

device which remembers its network credentials. It 

happens when a device wakes after sleeping or when 

it was powered off or when it goes out of range. The 

sleeping device or unplugged device directly gets 

into the receive mode and waits in the present 

channel for a finite time and later if it does not listen 

to any packets from its own network, it listens across 

all the channels on the back up list serially, until it 

sniffs a packet from its current network. A device 

out of range after a threshold number of 
retransmissions, tries to find a new parent by 

broadcasting a DIO request to its neighbors. If it still 

does not receive any DIOs it should get into receive 

mode and acts like a woken up sleepy device as 

explained above. 

 

III. NETWORK LAYER DESIGN FOR CR-WSN 
A. The RPL framework 

The key idea of RPL is to maintain network 
state information using one or more DAGs. A DAG 

is a directed graph wherein all edges are oriented in 

such a way that no loops exist. For each DAG 

created in RPL, there is a root. The DAG root 

typically is the coordinator in smart grid utility 

networks. Each node in the DAG is associated with a 

rank value. The rank of nodes along any path to the 

DAG root should be monotonically decreasing in 

order to avoid any routing loop. In order to construct 

a DAG, the gateway node will issue a DIO [4]. 

 

B. Packet forwarding rules 
Node to Coordinator (Forward Path): A 

meter node that generates or receives a data packet 

destined to the coordinator should forward this 

packet to its default parent. The packet should be 

dropped if the node does not have a default parent.  

 

Coordinator to Node (Reverse Path): A 

node that generates or receives a data packet 

destined to node ―i‖ should search for i’s entry 

inside the destination list (DL), if found forward the 

packet to the next-hop node indicated as per the list, 

else the packet should be dropped. 

 

C.  Network info tuples contained by different 

node types 

 Node ID: Each node in the network is uniquely 
identified by its node ID i.e. IP address of the 

node. 

 DAG ID: Node ID of the coordinator. 

 Node Type: Coordinator /Spectrum Sensor/ 

ordinary node. 

 Rank: This explains its distance from the PAN 

coordinator. 

 Neighbor list: It’s a list of neighbor entries. It 

contains the entries of all the nodes in the 

network to which it can 

 listen. Following are the parameters 
corresponding to each neighbor list entry: The 

node ID of the neighbor node, Rank of the 

corresponding neighbor node, The ETX of the 

link from current node to corresponding neighbor 

node. 

 Default Parent ID: It is the node ID of the 

neighbor node with the least rank in the neighbor 

list. 

 Destination list (DL): It is nothing but a routing 

table. It consists of following parameters 

associated with each  

 entry: The ID of the destination node, ID of the 
next hop node. 

 Spectrum Sensor list: This consists of the entire 

node IDs of elected Spectrum Sensor nodes. 

 Channel Backup list: This contains the frequency 

bands list with their priorities. 

 PA or Non-PA: Contains power amplifier or not 

while transmitting. 

 BD or Non-BD: A node is battery driven or not. 

 

Ordinary node (neither coordinator/spectrum 
sensor): 

(DAG ID, Node ID, Node Type, Rank, Neighbor 

list, Default parent ID, DL, PA or Non-PA, BD or 

Non-BD, Channel backup list) 

 

Coordinator: (DAG ID, Node ID, Node 

Type, Rank, Neighbor list, Default parent ID, DL, 

PA or Non-PA, BD or 

Non-BD, Channel backup list, Spectrum 

Sensor list) 

Spectrum Sensor: (DAG ID, Node ID, Node Type, 

Rank, Neighbor list, Default parent ID, DL, PA or 
Non-PA, BD or Non-BD, Channel backup list). An 

ordinary node can hear DIOs from more than one 

Spectrum Sensors but no Spectrum Sensor would 

hear a DIO from another Spectrum Sensor. 

We consider the following anycast field equations 

defined over an open bounded piece of network and 

/or feature space 
dR . They describe the 
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dynamics of the mean anycast of each of p node 

populations. 

|

1

( ) ( , ) ( , ) [( ( ( , ), ) )]

(1)
( , ), 0,1 ,

( , ) ( , ) [ ,0]

p

i i ij j ij j

j

ext

i

i i

d
l V t r J r r S V t r r r h dr

dt

I r t t i p

V t r t r t T









   




   
   



  

We give an interpretation of the various 

parameters and functions that appear in (1),   is 

finite piece of nodes and/or feature space and is 

represented as an open bounded set of 
dR . The 

vector r  and r  represent points in   . The 

function : (0,1)S R  is the normalized sigmoid 

function: 

 

 
1

( ) (2)
1 z

S z
e




  

 

It describes the relation between the input 

rate iv  of population i  as a function of the packets 

potential, for example, [ ( )].i i i i iV v S V h    

We note V  the p   dimensional vector 

1( ,..., ).pV V The p  function , 1,..., ,i i p   

represent the initial conditions, see below. We note 

  the  p   dimensional vector 1( ,..., ).p   The 

p  function , 1,..., ,ext

iI i p  represent external 

factors from other network areas. We note 
extI  the 

p   dimensional vector 1( ,..., ).ext ext

pI I The p p  

matrix of functions , 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  

determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The 

p real positive values , 1,..., ,i i p   determine 

the slopes of the sigmoids at the origin. Finally the 

p real positive values , 1,..., ,il i p   determine the 

speed at which each anycast node potential 

decreases exponentially toward its real value. We 

also introduce the function : ,p pS R R  defined 

by 1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     

and the diagonal p p  matrix 

0 1( ,..., ).pL diag l l Is the intrinsic dynamics of 

the population given by the linear response of data 

transfer. ( )i

d
l

dt
  is replaced by 

2( )i

d
l

dt
  to use 

the alpha function response. We use ( )i

d
l

dt
  for 

simplicity although our analysis applies to more 

general intrinsic dynamics. For the sake, of 

generality, the propagation delays are not assumed to 

be identical for all populations, hence they are 

described by a matrix ( , )r r  whose element 

( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent 

of the populations. We assume for technical reasons 

that   is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus 

no assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential 

factor V  on interval [ ,0].T  The value of T  is 

obtained by considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

Hence we choose mT   

 

D. Mathematical Framework 

A convenient functional setting for the non-

delayed packet field equations is to use the space 
2 ( , )pF L R   which is a Hilbert space endowed 

with the usual inner product: 

1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0 ([ ,0], )mC C F   with 

[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we write 

(1) as  
.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


 
  

Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the 
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papers on this subject assume   infinite, hence 

requiring .m      

 

Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0 ( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     

Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 

 

E. Boundedness of Solutions 

A valid model of neural networks should only 

feature bounded packet node potentials.  

 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
    

Proof :Let us defined :f R C R   as 

2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
    

  

We note 1,...min i p il l   

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t       

Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l


 
     

  

Let us show that the open route of F  of 

center 0 and radius , ,RR B  is stable under the 

dynamics of equation. We know that ( )V t  is 

defined for all 0t s  and that 0f   on ,RB  the 

boundary of RB . We consider three cases for the 

initial condition 0.V If 0 C
V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose 

that ,T R  then ( )V T  is defined and belongs to 

,RB  the closure of ,RB  because  
RB is closed, in 

effect to ,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts 

the definition of T. Thus T R  and 
RB is stable. 

 Because f<0 on , (0)R RB V B   implies 

that 0, ( ) Rt V t B   . Finally we consider the 

case (0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 

2
0, 2 ,

F

d
t V

dt
     thus ( )

F
V t  is 

monotonically decreasing and reaches the value of R 

in finite time when ( )V t  reaches .RB  This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity of 

  shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r

i i r

n

i i r r

r i r

E A E A E

A E E

    

  



  

 

  

   

  

  

 

  

Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E

s t d E        

and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 
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Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is vacuously 

satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze’s theorem, f  can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 
2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 

2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on, 

  will be fixed. We shall prove that there is a 

polynomial P  such that  
 

( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z


    

 


    

   

 

Where X  is the set of all points in the 

support of   whose distance from the complement 

of K  does not  . (Thus  X contains no point 

which is ―far within‖ K .) We construct  as the 

convolution of f  with a smoothing function A. Put 

( ) 0a r   if ,r  put  

 
2

2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  







    

 

The constants are so adjusted in (6) that (8) 

holds.  (Compute the integral in polar coordinates), 

(9) holds simply because A  has compact support. 

To compute (10), express A  in polar coordinates, 

and note that 0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And ( ) 0A    if ,    (3) follows from (8). 

The difference quotients of A  converge boundedly 

to the corresponding partial derivatives, since 
' 2( )cA C R . Hence the last expression in (11) may 

be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) 

and (13) give (4). If we write (13) with x  and 

y  in place of ,  we see that   has continuous 

partial derivatives, if we can show that 0   in 

,G  where G  is the set of all z K  whose distance 

from the complement of K  exceeds .  We shall do 

this by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 
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K  for all   with .   The mean value 

property for harmonic functions therefore gives, by 

the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 
  

For all z G  , we have now proved (3), 

(4), and (5) The definition of X  shows that X is 

compact and that X  can be covered by finitely 

many open discs 1,..., ,nD D  of radius 2 ,  whose 

centers are not in .K  Since 
2S K  is connected, 

the center of each jD  can be joined to   by a 

polygonal path in 
2S K . It follows that each jD

contains a compact connected set ,jE  of diameter at 

least 2 ,  so that 
2

jS E  is connected and so that 

.jK E     with 2r  . There are functions 

2( )j jg H S E   and constants jb  so that the 

inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z       

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 



   

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


     

(18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

Observe that the inequalities (16) and (17) are valid 

with R  in place of jQ  if X   and .z  

Now fix  .z   , put ,iz e     and estimate 

the integrand in (22) by (16) if 4 ,   by (17) if 

4 .    The integral in (22) is then seen to be less 

than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  
2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

  

Since ( ), ,F H K    and 
2S K  is 

connected, Runge’s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 
Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 

 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 

with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following ―Cauchy formula‖ holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, as 

0,   of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 
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For each 0,r   is periodic in ,  with period 

2 . The integral of /    is therefore 0, and (4) 

becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

     

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

 

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


  

and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A   for the ideal corresponding to 

A  (subspace generated by the ,X a   ). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S    is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are any 

elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in it 

is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 
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PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated 

by single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   

  

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a        

r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 

leading coefficients of the polynomials in a  form an 

ideal 
'a  in A ,  and since A  is Noetherian, 

'a will 

be finitely generated. Let 1,..., mg g  be elements of 

a  whose leading coefficients generate 
'a , and let 

r be the maximum degree of ig . Now let ,f a  

and suppose f  has degree s r , say, 

...sf aX   Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let 

da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 

degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial df  in 

a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   

of degree 1d  . On applying this remark 

repeatedly we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 

 and so the polynomials 
01 0,,..., mg g  generate a   

One of the great successes of category 

theory in computer science has been the 

development of a ―unified theory‖ of the 

constructions underlying denotational semantics. In 

the untyped  -calculus,  any term may appear in 

the function position of an application. This means 

that a model D of the  -calculus must have the 

property that given a term t  whose interpretation is 

,d D  Also, the interpretation of a functional 

abstraction like x . x  is most conveniently defined 

as a function from Dto D  , which must then be 

regarded as an element of D. Let 

 : D D D    be the function that picks out 

elements of D to  represent elements of  D D  

and  : D D D    be the function that maps 

elements of D to functions of D.  Since ( )f  is 

intended to represent the function f  as an element 

of D, it makes sense to require that ( ( )) ,f f    

that is, 
 D D

o id 


   Furthermore, we often 

want to view every element of D as representing 

some function from D to D and require that elements 

representing the same function be equal – that is   

( ( ))

D

d d

or

o id

 

 





  

The latter condition is called extensionality. 

These conditions together imply that and   are 

inverses--- that is, D is isomorphic to the space of 

functions from D to D  that can be the interpretations 

of functional abstractions:  D D D   .Let us 

suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some 

predetermined domain containing interpretations for 

elements of C.  Each element of D corresponds to 

either an element of A or an element of  ,D D  

with a tag. This equation can be solved by finding 

least fixed points of the function 

 ( )F X A X X    from domains to domains 

--- that is, finding domains X  such that 
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 ,X A X X    and such that for any domain 

Y also satisfying this equation, there is an embedding 

of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
R

X

R

Y

f o f id

f o f id




  

 

Where f g  means that 

f approximates g  in some ordering representing 

their information content. The key shift of 

perspective from the domain-theoretic to the more 

general category-theoretic approach lies in 

considering F not as a function on domains, but as a 

functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

Definition 1.3: Let K be a category and 

:F K K  as a functor. A fixed point of F is a 

pair (A,a), where A is a K-object and 

: ( )a F A A  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and 

a is any arrow from F(A) to A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       
Recall that a cocone   of an 

chain    is a K-object X and a collection of K 

–arrows  : | 0i iD X i    such that 

1i i io f    for all 0i  . We sometimes write 

: X   as a reminder of the arrangement of 

' s  components Similarly, a colimit : X 

is a cocone with the property that if 
': X   is 

also a cocone then there exists a unique mediating 

arrow 
':k X X  such that for all 

0,, i ii v k o  . Colimits of chains  are 

sometimes referred to as limco its . Dually, an 
op chain   in K is a diagram of the following 

form: 
1 2

1 2 .....
of f f

oD D D    
 
A cone 

: X   of an 
op chain    is a K-object X 

and a collection of K-arrows  : | 0i iD i   such 

that for all 10, i i ii f o    . An  
op -limit of 

an 
op chain     is a cone : X   with 

the property that if 
': X  is also a cone, then 

there exists a unique mediating arrow 
':k X X  

such that for all 0, i ii o k    . We write k  

(or just  ) for the distinguish initial object of K, 

when it has one, and A  for the unique arrow 

from   to each K-object A. It is also convenient to 

write 
1 2

1 2 .....
f f

D D    to denote all of   

except oD  and 0f . By analogy,  
 is  | 1i i  . 

For the images of   and   under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of F 

– that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 

Theorem 1.4 Let a DAG G given in which 

each node is a random variable, and let a discrete 

conditional probability distribution of each node 

given values of its parents in G be specified. Then 

the product of these conditional distributions yields a 
joint probability distribution P of the variables, and 

(G,P) satisfies the Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

Where iPA is the set of parents of iX of in 

G and ( | )i iP x pa is the specified conditional 

probability distribution. First we show this does 
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indeed yield a joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 

variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the 

conditional distributions they notationally represent 

in the joint distribution. Finally, we show the 

Markov condition is satisfied. To do this, we need 

show for 1 k n   that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of 

in G. Since k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , 

order the nodes so that all and only nondescendents 

of kX precede kX in the ordering. Note that this 

ordering depends on k , whereas the ordering in the 

first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

We define the 
thm cyclotomic field to be 

the field   / ( ( ))mQ x x
 
Where ( )m x is the 

thm cyclotomic polynomial.   / ( ( ))mQ x x  

( )m x  has degree ( )m over Q since ( )m x

has degree ( )m . The roots of ( )m x  are just the 

primitive 
thm roots of unity, so the complex 

embeddings of   / ( ( ))mQ x x are simply the 

( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it follows 

that ( ) ( )k

m mQ Q  for all k relatively prime to 

m . In particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that 

we can write ( )mQ  for   / ( ( ))mQ x x without 

much fear of ambiguity; we will do so from now on, 

the identification being .m x  One advantage of 

this is that one can easily talk about cyclotomic 

fields being extensions of one another,or 

intersections or compositums; all of these things 

take place considering them as subfield of .C  We 

now investigate some basic properties of cyclotomic 

fields. The first issue is whether or not they are all 

distinct; to determine this, we need to know which 

roots of unity lie in ( )mQ  .Note, for example, that 

if m is odd, then m is a 2 thm root of unity. We 

will show that this is the only way in which one can 

obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ 

so the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ  

has degree ( )mn
 
over  Q , so we must have 

   ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2 For any m and n  



 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)                 ISSN: 2248-9622              www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.930-963 

944 | P a g e  

 

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 

 

PROOF.    Write 1 1

1 1...... ....k ke fe f

k km p p and p p

where the ip are distinct primes. (We allow 

i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 

An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 

Mutual information measures the information 

transferred when ix  is sent and iy  is received, and 

is defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely 

connected to the corresponding ix  , and so they 

constitute an input –output pair ( , )i ix y  for which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the 

self-information that corresponds to the input ix
 
In a 

very noisy channel, the output iy and input ix would 

be completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y
  and also ( , ) 0;i jI x y  that is, 

there is no transference of information. In general, a 

given channel will operate between these two 

extremes. The mutual information is defined 

between the input and the output of a given channel. 

An average of the calculation of the mutual 

information for all input-output pairs of a given 

channel is the average mutual information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful 

for modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 
2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  

is usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an output 

symbol jy provides ( ) ( )XH X H
Y

  bits of 

information. This difference is the mutual 
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information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 

( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

This last entropy is usually called the noise 

entropy. Thus, the information transferred through 

the channel is the difference between the output 

entropy and the noise entropy. Alternatively, it can 
be said that the channel mutual information is the 

difference between the number of bits needed for 

determining a given input symbol before knowing 

the corresponding output symbol, and the number of 

bits needed for determining a given input symbol 

after knowing the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information 

expression is a difference between two quantities, it 

seems that this parameter can adopt negative values. 

However, and is spite of the fact that for some 

, ( / )j jy H X y  can be larger than ( )H X , this is 

not possible for the average value calculated over all 

the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

The above expression can be applied due to 

the factor ( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that 

fits the condition 1ii
Q  . It can be concluded 

that the average mutual information is a non-

negative number. It can also be equal to zero, when 

the input and the output are independent of each 

other. A related entropy called the joint entropy is 

defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 

Theorem 1.5: Entropies of the binary erasure 

channel (BEC) The BEC is defined with an alphabet 

of two inputs and three outputs, with symbol 

probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ( )p x an 

arbitrary probability density function on Euclidean 

n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

 

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 



 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)                 ISSN: 2248-9622              www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.930-963 

946 | P a g e  

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets , 1, 2,..., ,iB i u

form the desired code. Thus assume that the process 

terminates after t  steps. (Conceivably 0t  ). We 

will show t u  by showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  

Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 

F. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is 

easy to verify that this is in fact an ideal, and that it 

consist of all finite sums of the form i i
rs  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by 

a b . The ideal generated by   | ,ab a a b b 

is denoted by ab . Note that ab a b  . Clearly 

ab consists of all finite sums i i
a b  with ia a  

and ib b , and if 1( ,..., )ma a a  and 

1( ,..., )nb b b , then 

1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an ideal 

of A. The set of cosets of a in A forms a ring /A a
, and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b   is a one to 

one correspondence between the ideals of /A a  and 

the ideals of A  containing a An ideal p  if prime if 

p A  and ab p a p    or b p . Thus p  

is prime if and only if /A p  is nonzero and has the 

property that  0, 0 0,ab b a      i.e., 

/A p is an integral domain. An ideal m  is 

maximal if |m A  and there does not exist an ideal 

n  contained strictly between m and A . Thus m is 

maximal if and only if /A m  has no proper nonzero 

ideals, and so is a field. Note that m  maximal   

m prime. The ideals of A B  are all of the form 

a b , with a  and b  ideals in A  and B . To see 

this, note that if c  is an ideal in  A B  and 

( , )a b c , then ( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 

Let A  be a ring. An A -algebra is a ring B  together 

with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e.,  0R  . 

Polynomial rings.  Let  k  be a field. A monomial 

in 1,..., nX X  is an expression of the form 

1

1 ... ,naa

n jX X a N  . The total degree of the 

monomial is ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

a A



 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)                 ISSN: 2248-9622              www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.930-963 

947 | P a g e  

With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

i.e., f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 

polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding whether 

( )f g , namely, find r and check whether it is 

zero. Moreover, the Euclidean algorithm allows to 
pass from finite set of generators for an ideal in 

 k X to a single generator by successively 

replacing each pair of generators with their greatest 

common divisor. 

 

 (Pure) lexicographic ordering (lex). Here 

monomials are ordered by lexicographic(dictionary) 

order. More precisely, let 1( ,... )na a   and 

1( ,... )nb b   be two elements of 
n ; then  

   and  X X  (lexicographic ordering) if, 

in the vector difference    , the left most 

nonzero entry is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn’t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 
Graded reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if i ia b  , or i ia b   and in 

   the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on 

the monomials in  1,... nk X X . Then we can write 

an element f  of  1,... nk X X  in a canonical 

fashion, by re-ordering its elements in decreasing 

order. For example, we would write 

2 2 3 2 24 4 5 7f XY Z Z X X Z   
  

as 
3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    

  
or 

2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 0 ;  

 The leading coefficient of 
f

to be LC(
f

)=
0

a ; 

 The leading monomial of  
f

to be LM(
f

) = 
0X


; 

 The leading term of 
f

to be LT(
f

) = 0

0
a X



   

For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, 

the leading monomial is 
2XY Z , and the leading 

term is  
24XY Z . The division algorithm in 

 1,... nk X X . Fix a monomial ordering in 
2 . 

Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm 

then constructs polynomials 1,... sa a  and r   such 

that 1 1 ... s sf a g a g r      Where either 

0r   or no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 

1( ) | ( )LT g LT f , divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 1 

with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 
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ideal 
2 3( )a Y X   contains 

2 3Y X but not 

2Y  or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, and 

let  |A X a  . Then A satisfies the 

condition , ( )nA           

And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A   . Conversely, of A  is 

a subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by  |X A 

is a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   

If a permutation is chosen uniformly and at random 

from the !n  possible permutations in ,nS  then the 

counts 
( )n

jC  of cycles of length j  are dependent 

random variables. The joint distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy’s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
 

 for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    when ,j jc m  which 

occurs between the ingredients in Cauchy’s formula 
and the falling factorials in the moments. Write 

jm jm . Then, with the first sum indexed by 

1( ,... ) n

nc c c    and the last sum indexed by  

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 

0jd   for ,j n m   and a random permutation 

in n mS   must have some cycle structure 

1( ,..., )n md d  . The moments of 
( )n

jC   follow 

immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the jZ  are independent Poisson-distribution 

random variables that satisfy ( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides 

a formula for the joint distribution of the cycle 

counts ,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the 
inclusion-exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the ―property‖ G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 
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are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 

moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the intersection. 

There are 
[ ] / ( !)rj rn j r  such intersections. For the 

other case, some two distinct properties name some 
element in common, so no permutation can have 

both these properties, and the r -fold intersection is 

empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the 

number of permutations having exactly k  properties 

is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

 

Which simplifies to (1.1) Returning to the 

original hat-check problem, we substitute j=1 in 

(1.1) to obtain the distribution of the number of fixed 

points of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 
( )n

j d jC Z  

where (1/ )j oZ P j   to describe this. Infact, the 

limit random variables are independent. 

 

Theorem 1.6   The process of cycle counts 

converges in distribution to a Poisson process of   

with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

Where the , 1, 2,...,jZ j   are independent 

Poisson-distributed random variables with  

1
( )jE Z

j
   

Proof.  To establish the converges in distribution one 

shows that for each fixed 1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

The proof of Theorem says nothing about the rate of 

convergence. Elementary analysis can be used to 

estimate this rate when 1b  . Using properties of 

alternating series with decreasing terms, for 

0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  


  

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C  of 
( )

1

nC  and the 

distribution 1( )L Z  of 1Z
 

 

Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 
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 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



  

Where 
 
'

1,2,7
( )n  refers to the quantity derived 

from 
'Z . It thus follows that 

( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  and 

01( )B  are satisfied and if 
'

( )g

i O i    from some 

' 0,g   since, under these circumstances, both 

 
1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to zero as 

.n   In particular, for polynomials and square 

free polynomials, the relative error in this asymptotic 

approximation is of order 
1n
 if 

' 1.g    

 

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where  7,7
( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 
  

[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


   

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


 
[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
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P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 


  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )
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b

n
n n P T r P T s r s

P

n ET
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










 

 



  



 

  

Hence we may take 

 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)
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n b n ET Z P
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n b
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Required order under Conditions 0 1( ), ( )A D  and 

11( ),B  if ( ) .S    If not, 
   10.8

n
 can be 

replaced by 
   10.11

n
in the above, which has the 

required order, without the restriction on the ir  

implied by ( )S   . Examining the Conditions  

0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  

that is, that we should need 1

2
( )

a

ill
l O i 


   to 

hold for some 1 1a  . A first observation is that a 

similar problem arises with the rate of decay of 1i  

as well. For this reason, 1n  is replaced by 1n


. This 

makes it possible to replace condition 1( )A  by the 

weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for 
   7,7

,n b  to be 

of order ( / );O b n   the decay rate requirement of 

order 
1i  

 is shifted from 1i  itself to its first 

difference. This is needed to obtain the right 
approximation error for the random mappings 

example. However, since all the classical 

applications make far more stringent assumptions 

about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 

estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far 

tail element from 1n


 of the form 1 1( ) ( ),n u n   

which is only small if 1 1,a   being otherwise of 

order 11( )aO n  
 for any 0,   since 2 1a   is in 

any case assumed. For / 2,s n  this gives rise to a 

contribution of order  11( )aO n   
 in the estimate 

of the difference [ ] [ 1],bn bnP T s P T s     

which, in the remainder of the proof, is translated 

into a contribution of order 11( )aO tn   
for 

differences of the form 

[ ] [ 1],bn bnP T s P T s     finally leading to a 

contribution of order 1abn  
 for any 0   in 

 7.7
( , ).n b  Some improvement would seem to be 

possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 

difference in point probabilities is improved to an 
estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n    for 

any 0  , to replace  7.7
( , ).n b  This would be 

of the ideal order ( / )O b n for large enough ,b  but 

would still be coarser for small .b   

 

 

With b and n  as in the previous section, we wish to 

show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

Where 
 

121 1

7.8
( , ) ( [ ])n b O n b n b n        for 

any 0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula  
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Now we observe that  
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We have   
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The approximation in (1.2) is further simplified by 

noting that  
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and then by observing that  
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r n s

b b b b

b

s r
P T r P T s

n

n ET P T n E T T n

n ET







 





  
  

 

    

 

 

 

 

Combining the contributions of (1.2) –(1.3), we thus 

find tha

 

    

 

1

0 0

0 0

7.8

1

010.5(2) 10.14

10.82 2

0

( ( [1, ]), ( [1, ]))

( 1) [ ] [ ]( )(1 )

( , )

3
( / 2, ) 2 ( , )

[0,1]

24 1 ( )
2 4 3 1 (1.5)

[0,1]

TV

b b

r s

b

b

d L C b L Z b

n P T r P T s s r

n b

n b n ET n b
P

n
n ET

P









 


 






  







 
      

 



 

  
    

  

 

 

 

The quantity  7.8
( , )n b is seen to be of 

the order claimed under Conditions 0 1( ), ( )A D  and 

12( )B , provided that ( ) ;S     this 

supplementary condition can be removed if 

 10.8
( )n

 is replaced by 
 10.11

( )n
   in the 

definition of  7.8
( , )n b , has the required order 

without the restriction on the ir  implied by assuming 

that ( ) .S   Finally, a direct calculation now 

shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b

r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 

Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin 

O). Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

―standard origin‖.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors}  

Operations with vectors: multiplication by a 

number, addition. Operations with points and 

vectors: adding a vector to a point (giving a point), 

subtracting two points (giving a vector). 
n treated 

in this way is called an n-dimensional affine space. 

(An ―abstract‖ affine space is a pair of sets , the set 
of points and the set of vectors so that the operations 

as above are defined axiomatically). Notice that 
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vectors in an affine space are also known as ―free 

vectors‖. Intuitively, they are not fixed at points and 

―float freely‖ in space. From 
n considered as an 

affine space we can precede in two opposite 

directions: 
n  as an Euclidean space  

n as an 

affine space  
n as a manifold.Going to the left 

means introducing some extra structure which will 

make the geometry richer. Going to the right means 

forgetting about part of the affine structure; going 

further in this direction will lead us to the so-called 
―smooth (or differentiable) manifolds‖. The theory 

of differential forms does not require any extra 

geometry. So our natural direction is to the right. 

The Euclidean structure, however, is useful for 

examples and applications. So let us say a few words 

about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 

consider lines and planes, and quadric surfaces like 

an ellipsoid. However, we cannot discuss such 
things as ―lengths‖, ―angles‖ or ―areas‖ and 

―volumes‖. To be able to do so, we have to introduce 

some more definitions, making 
n a Euclidean 

space. Namely, we define the length of a vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined 

possesses natural properties that we expect: is it 

always non-negative and equals zero only for 
coinciding points; the distance from A to B is the 

same as that from B to A (symmetry); also, for three 

points, A, B and C, we have 

( , ) ( , ) ( , )d A B d A C d C B   (the ―triangle 

inequality‖). To define angles, we first introduce the 

scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also 

denote by dot: . ( , )a b a b , and hence is often 

referred to as the ―dot product‖ . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral 

multiple of 2  . For this definition to be consistent 

we have to ensure that the r.h.s. of (4) does not 

exceed 1 by the absolute value. This follows from 

the inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three 
names are applied in different books). One of the 

ways of proving (5) is to consider the scalar square 

of the linear combination ,a tb  where t R . As  

( , ) 0a tb a tb    is a quadratic polynomial in t  

which is never negative, its discriminant must be 

less or equal zero. Writing this explicitly yields (5). 

The triangle inequality for distances also follows 

from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  

which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx  are linear functions giving on 

an arbitrary vector h  its coordinates 
1 2, ,...,h h  

respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx   at 

0t t  and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when

0h  . Combining it together, for the increment 

of ( ( ))f x t   we obtain 
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0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that ( ) 0t  

when 0t   (we used the linearity of 0( )df x ). 

By the definition, this means that the derivative of 

( ( ))f x t  at 0t t  is exactly 0( )( )df x  . The 

statement of the theorem can be expressed by a 

simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  

 

To calculate the value Of df  at a point 0x  

on a given vector   one can take an arbitrary curve 

passing Through 0x  at 0t  with   as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and 

an arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 

usual derivative Now, almost without change the 

theory generalizes to functions taking values in  
m  

instead of  . The only difference is that now the 

differential of a map : mF U    at a point x  

will be a linear function taking vectors in 
n  to 

vectors in 
m (instead of  ) . For an arbitrary 

vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 

In this matrix notation we have to write vectors as 
vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  

Where ( ) 0t    when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

  

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 

can be viewed as the velocity vector of some curve 
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passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 

   

Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n  with the 

velocity vector 
.

x . Basically, we need to know to 

which vector in  
p it is taken by ( )d GoF . the 

curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve ( ( ))F x t  in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary 

vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

Where 
idF  are taken from (1). In other words, to 

get ( )d GoF  we have to substitute into (2) the 

expression for 
i idy dF  from (3). This can also 

be expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

 

 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my  

on 
nx  is given by the map F , the dependence 

of 
pz  on 

my  is given by the map ,G  

and the dependence of  
pz on 

nx is given 

by the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU   . 

Consider also another copy of 
n , denoted for 

distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this system are 

the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y

  

Here the variables 
1( ..., )ny y  are the ―new‖ 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  
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( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )), ( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   
   

Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the ―standard‖ coordinates: 
. . .

1 2x e x e y  . Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

From where it follows that these vectors make a 
basis at all points except for the origin (where 

0r  ). It is instructive to sketch a picture, drawing 

vectors corresponding to a point as starting from that 

point. Notice that  ,x x
r 

 
 

 are, respectively, 

the velocity vectors for the curves ( , )r x r    

0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if 

as a basis we take : , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

A characteristic feature of the basis ,re e  is that it 

is not ―constant‖ but depends on point. Vectors 

―stuck to points‖ when we consider curvilinear 

coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 
Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 

velocity vectors of the coordinate lines 

1( ,..., )i nx x x x   (all coordinates but 
ix  are 

fixed). Since we now know how to handle velocities 
in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 0

nx   to vectors attached to 

the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a 

change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in 

the standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in 

the polar coordinates. In particular, we see that this 

is again a 1-form, a linear combination of the 

differentials of coordinates with functions as 

coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear 

function on vectors at every point of U : 
1

1( ) ... , (1)n

n         
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If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 

, the integral 



  does not change if we change 

parametrization of   provide the orientation 

remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

Let p  be a rational prime and let ( ).pK    We 

write   for p  or this section. Recall that K  has 

degree ( ) 1p p    over .  We wish to show 

that  .KO    Note that   is a root of 1,px   

and thus is an algebraic integer; since K  is a ring 

we have that   .KO   We give a proof without 

assuming unique factorization of ideals. We begin 

with some norm and trace computations. Let j  be 

an integer. If j is not divisible by ,p  then 
j  is a 

primitive 
thp  root of unity, and thus its conjugates 

are 
2 1, ,..., .p   

 Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

 If p  does divide ,j  then 1,j   so it has only 

the one conjugate 1, and  / ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

We also need to compute the norm of 1  . For 

this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 

for determining the ring of integers KO  is the 

following. 
 

LEMMA 1.9 

 (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose 

now that the inclusion is strict. Since 

(1 ) KO  is an ideal of   containing p  

and p is a maximal ideal of  , we must have  

(1 ) KO   
 
Thus we can write 

 1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex embeddings 

of K  (which we are really viewing as 

automorphisms of K ) with the usual ordering.  

Furthermore, 1
j  is a multiple of 1   in KO  

for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number and 

let | ( )pK    be the 
thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 
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2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next consider 

the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 
  

Example 1.4   Let K   , then the local 

ring ( )p  is simply the subring of   of rational 

numbers with denominator relatively prime to p . 

Note that this ring   ( )p is not the ring p of p -

adic integers; to get  p one must complete ( )p . 

The usefulness of ,K pO  comes from the fact that it 

has a particularly simple ideal structure. Let a be 

any proper ideal of ,K pO  and consider the ideal 

Ka O  of .KO  We claim that 

,( ) ;K K pa a O O     That is, that a  is generated 

by the elements of a  in .Ka O  It is clear from 

the definition of an ideal that ,( ) .K K pa a O O   

To prove the other inclusion, let   be any element 

of a . Then we can write /    where 

KO   and .p   In particular, a   (since 

/ a    and a  is an ideal), so KO   and 

.p   so .Ka O    Since ,1/ ,K pO   this 

implies that ,/ ( ) ,K K pa O O      as 

claimed.We can use this fact to determine all of the 

ideals of , .K pO  Let a  be any ideal of ,K pO and 

consider the ideal factorization of Ka O in .KO  

write it as 
n

Ka O p b   For some n  and some 

ideal ,b  relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  , , ,( ) n n

K K p K p K pa a O O p bO p O      

Since , .K pbO  Thus every ideal of ,K pO  has the 

form ,

n

K pp O  for some ;n  it follows immediately 

that ,K pO is noetherian. It is also now clear that 

,

n

K pp O is the unique non-zero prime ideal in ,K pO . 

Furthermore, the inclusion , ,/K K p K pO O pO  

Since , ,K p KpO O p   this map is also 

surjection, since the residue class of ,/ K pO    

(with KO   and p  ) is the image of 
1 

 

in / ,K pO  which makes sense since   is invertible 

in / .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-

zero prime ideal of ,K pO is maximal.  To 

show that ,K pO is a Dedekind domain, it remains to 

show that it is integrally closed in K . So let K   

be a root of a polynomial with coefficients in  

, ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x
 

 





    With i KO   and 

.i K pO   Set 0 1 1... .m      Multiplying by 

m  we find that   is the root of a monic 

polynomial with coefficients in .KO  Thus 

;KO   since ,p   we have 

,/ K pO    . Thus  ,K pO is integrally close 

in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free -

module of rank ,n    

// ( )K K KO N O   Will have order / ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     
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This completes the proof.  In the general case, let L  

be the Galois closure of K  and set [ : ] .L K m   

 

G.  Application of Smart Grid 

The applications in the Smart Grid are 
divided into smart power generation, intelligent 

transmission and substation and intelligent power 

use. Data collection is the key to intelligentize power 

grid. Realization of intelligent power grid makes it 

possible to get the information of the intelligent 

power grid completely and in time. The control of 

the grid information needs perfect communication 

lines and enough terminal information, and it can 

ensure the security and stability of data transmission, 

improve the reliability of data exchange and provide 

accurate information in time for the intelligent 

application. Smart Grid may use more devices, 
including a variety of intelligent sensors, control 

components and electrical equipment, which require 

higher digitization degree of power grid and better 

data collection, transmission, storage and utilization 

in the process of power generation, transmission, 

substation and distribution. Using a variety of 

information collection technologies to collect 

information of power use and device status and get 

the equipment running status make it possible to get 

the information of equipment failure in time, which 

can ensure the equipment operate correctly[17]. 
Some of the information collection technologies are 

based on Power Line Carrier Communication, some 

are based on fiber network, some are based on cable 

transmission, and others are based on wireless 

transmission. Because networks and users are 

various, especially in power using side, there are no 

network transmission ways that can meet the 

demands of all kinds of users. Suitable methods 

should be selected according to different demands. 

For wireless communication can be installed fast and 

need no line, it can be used in areas where network 

infrastructure are not so developed or can not be 
developed, such as old town, mountain areas and 

vast rural areas. Therefore, the research work on 

wireless sensor network applications in the smart 

grid is useful complement to cable transmission. For 

the features of the low-cost and low power 

consumption in user managing and Meter Reading, 

Zigbee is often used in Automatic Meter Reading. 

But Zigbee has limitations too, such as low capacity 

of NLOS transmission, which is fatal to meter data 

collection in thousands of families of high-rise 

apartment-style. And more, its transmission rate is 
too low to meet the demands of the new generation 

of Automatic Meter Reading system in large scale of 

data realtime transmission and control. Comparing 

with Zigbee-based WSN, WiFi-based WSN has 

better NLOS transmission capability and can be used 

to transmit through the load-bearing walls. It is more 

suitable for thousands of families meter reading 

transmission in high-rise apartment-style. More, its 

transmission rate is faster and its bandwidth is 

higher, so it is more suitable for the new generation 

Internet of Things-based Automatic Meter Reading 

system, which has large scale of real-time data. In 

addition, WiFi is securer and WiFi-based WSN has 

lower power consumption comparing with Zigbee. 

Therefore, WiFi sensor network is more suitable to 
build new generation Automatic Meter Reading 

system facing to Internet of Things. With the 

increasing of production, the product cost of WiFi-

base WSN will decrease soon. With the continuous 

development of SOC technology, the power 

consumption of WiFi sensor chip will be further 

reduced and it will be more suitable for Automatic 

Meter Reading or other applications which need low 

power consumption. 

 

IV. WSN BASED HOME ENERGY 

MANAGEMENT APPLICATIONS 
In the smart grid, HANs will become the 

natural extensions  of the grid penetrating into the 

residential areas, and home energy management will 

be a part of the coordination between generation and 

load. In [12], we presented an in-Home Energy 

Management (iHEM) application that uses WSNs. In 

this paper, we present detailed performance 
evaluation of the WSN used in iHEM. The iHEM 

application employs smart appliances with 

communication capability, a WSN and a central 

Energy Management Unit (EMU). In the iHEM 

application, when a consumer turns on an appliance, 

the appliance generates a START-REQ packet and 

sends it to the EMU. When the EMU receives the 

START-REQ packet, it sends AVAIL-REQ packets 

to the energy storage units to retrieve the amount of 

energy generated by the renewable resources and 

stored in their associated storage units. EMU also 
communicates with the smart meter periodically and 

receives updated price information from the utility. 

Upon reception of AVAIL-REQ, the storage unit 

replies with a AVAIL-REP packet where the amount 

of available energy is sent to the EMU. After 

receiving the AVAILREP packet, EMU determines 

the convenient starting time of the appliance. 

Basically EMU first tries to accommodate the 

appliance requests by the locally generated power. If 

the local power is not adequate then it tries to shift 

the request to an off-peak hour. After these 
scheduling attempts, EMU computes the waiting time 

as the difference between the suggested and 

requested start time, and sends the waiting time in the 

START-REP packet to the appliance. The waiting 

time is displayed on the LCD monitor of the 

appliance. The consumer decides whether to start the 

appliance right away or wait until the assigned time 

slot depending on the waiting time. The decision of 

the consumer is sent back to the EMU with a 

NOTIFICATION packet. This handshake protocol 

among the appliance and the EMU ensures that EMU 

does not force an automated start time which avoids 
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degrading the comfort of the consumers and provides 

flexibility. The iHEM application utilizes a WSN to 

relay its packets. We assume that this WSN is also 

utilized for other applications in the smart home. The 

WSN continues its regular tasks, such as inhabitant 

health monitoring, and at the same time, it relays 

iHEM messages. The WSN communicates via 
Zigbee. A sample topology of the WSN is given in 

Figure 3. Zigbee is a short-range, low-data rate, 

energy-efficient wireless technology that is based on 

the IEEE 802.15.4 standard. Zigbee utilizes 16 

channels in the 2.4GHz ISM band worldwide, 13 

channels in the 915MHz band in North America and 

one channel in the 868MHz band in Europe. The 

supported data rates are 250 kbps, 40 kbps, and 20 

kbps. Zigbee’s range is approximately 30 meters 

indoors. It supports 16-bit and 64- bit addressing 

modes, and it can support up to 64,000 nodes 

(devices). However, when HAN devices need to get 
integrated with the Internet, IP addressing is required. 

IPv6 over Low- Power Wireless Personal Area 

Networks (6LoWPAN), which is defined in the IETF 

RFC 4944, aims to integrate IPv6 addressing to 

LoWPANs like Zigbee. 6LoWPAN adds an 

adaptation layer to handle fragmentation, reassembly 

and header compression issues, to support IPv6 

packets on the short packet structure of Zigbee. 

Zigbee allows two types of devices which are Full 

Function Device (FFD) and Reduced Function 

Device (RFD). FFDs can communicate with their 
peers while RFDs are simpler than FFDs and they 

can be the edge nodes in a star topology. In Zigbee, 

sensor nodes are either organized in a star topology, 

mesh topology or a cluster-tree topology. In our 

model home, the WSN is organized in a cluster-tree 

topology. Zigbee requires a Personal Area Network 

(PAN) coordinator. PAN coordinator can operate in 

beacon-enabled mode or beaconless mode. The duty 

cycle of the nodes is defined with the superframe 

duration (SD) of the superframe structure. A 

superframe synchronizes the nodes in the network 

and nodes. Superframe has Contention Access Period 
(CAP) and Contention Free Period (CFP) slots. 

During CAP, nodes compete to access the channel by 

using the slotted Carrier Sense Multiple Access with 

Collision Avoidance (CSMA/CA) technique. During 

CFP, nodes that have previously reserved Guaranteed 

Time Slots (GTS) transmit their data. One cycle of 

active and inactive periods can occur within a Beacon 

Interval (BI) which starts at the beginning of a 

beacon frame and ends at the beginning of the next 

beacon frame. SD and BI are calculated as follows 

[13] 
 

A.  Noise and Interference Measurements 

In this section, we first investigate the 

impact of background noise on the overall 

performance of 802.15.4 sensor networks in different 

electric-power-system environments. Then, we show 

the effect of electronic appliances on 802.15.4 sensor 

networks. To measure background noise, we wrote a 

TinyOS application that samples RF energy at 62.5 

Hz by reading the received signal strength indicator 

(RSSI) register of the CC2420 radio. The register 

contains the average RSSI over the past eight symbol 

periods. We sampled noise on different radio 

channels in a wide range of environments, including 
an indoor power control room, a 500-kV substation, 

and an underground network transformer vault. Fig. 2 

shows our noise measurements and the effect of an 

electric appliance (microwave oven) on an 802.15.4 

network. From the field measurements, the average 

noise level is found to be around −90 dBm, which is 

significantly higher than that of outdoor 

environments, i.e., −105-dBm background noise is 

found in outdoor environments. We also observe that 

background noise continuously changes over time, 

which can be caused by temperature changes and 

interference levels. In Fig. 2(d), we also show the 
effect of microwave-oven interference on the noise 

floor measured by the Tmote Sky module [20]. As 

shown in Fig. 2, the interference from an existing  

microwave oven leads to a 15-dBm interference in 

the 2.4-GHz frequency band. 

 

B.  Link-Quality Measurements 

In this section, we focused on how to 

characterize and measure link quality in sensor 

networks deployed in electric-powersystem 

environments. We have conducted experiments with 
Tmote Sky nodes. In our experiments, to measure the 

radio link quality, two useful radio-hardware link-

quality metrics were used: LQI and RSSI. 

Specifically, RSSI is the estimate of the signal power 

and is calculated over eight symbol periods, while 

LQI can be viewed as chip error rate and is calculated 

over eight symbols following the start frame 

delimiter. LQI values are usually between 110 and 50 

and correspond to maximum and minimum quality 

frames, respectively. The details of LQI metric can 

be found in the IEEE 802.15.4 standard [15]. In our 

experiments, we use a pair of Tmote Sky nodes in 
different utility environments and outdoor 

environment, one as the sender and the other as the 

receiver. We vary the distance from the receiver to 

the sender from 1 to 20 m, in steps of 1 m. The 

output power level of each sensor node and the 

packet size were set to be −25 dBm and 30 B, 

respectively. At each distance, the transmitter sends 

200 data packets with a rate of 2 packets/s. We 

deliberately chose a low rate to avoid any potential 

interference, so that the effect of unreliable links can 

be isolated from that of congestion. In addition, 
various NLOS communication links are also 

considered. In Fig. 3, we present our preliminary 

experiment results to elaborate the relationship 

between PRR and link-quality metrics. Here, PRR 

represents the ratio of the number of successful 

packets to the total number of packets transmitted 

over a certain number of transmissions. Specifically, 
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Fig. 3 shows 95% confidence intervals. In this figure, 

we observe a strong correlation between the average 

LQI values and PRRs at the receiver. Statistical 

analysis shows that the Pearson correlation 

coefficient is around 0.70 between these two 

variables for the indoor main power room. This 

correlation implies that average LQI is a good 
measurable indicator of the packet reception 

probability. This observation is also consistent with 

the results in the related literature [20]. In Fig. 3, we 

also observe that there is a much smaller correlation 

between RSSI and the packet reception probability. 

The Pearson correlation coefficient is only 0.50 

between the packet reception probability and the 

RSSI value. Furthermore, it is found that when the 

signal is weak [particularly when it is around the 

sensitivity threshold of CC2420(−94 dBm)], even 

though there is a considerable variation in the packet 

loss rate, RSSI does not provide any correlated 
behavior with PRR. Here, it is also important to note 

that all these measurements should be used as a 

reference. The exact values for a particular site are 

likely to vary depending on the actual environment 

propagation characteristics, RF interference, etc. 

 

C.  Applications 

With the distributed networked monitoring 

system, the physical conditions of an overhead 

transmission line can be quantitatively determined in 

a real-time manner. The application matrix may 
include the measurement tension/strain, vibration, 

tilt, and temperature. With these quantities, some 

associated phenomena can be predicted, e.g., 

overheating, vibration, galloping, ice accretion, and 

sag[18]. These quantities can be used to assess the 

security of the power transmission system, hence 

allowing operators to regulate the power transfer on 

the transmission line, and the authors in [5] even 

proposed to use the sag measurement to correct the 

resistance and reactance data for transmission lines. 

In the past, the sag of the overhead transmission line 

is evaluated by measuring the strain/tension by 
placing load cells at the attachment point of 

conductor. With these information, the sag is 

evaluated with either catenary equation or its reduced 

version, i.e., parabolic equation. However, using of 

catenary equation or parabolic equation has to rely on 

the hypothesis that the load between a span is 

uniform. This hypothesis is not always true. A 

quanlitive observation on the above test setup shows 

that the detected strain varies largely when applying 

same amount of strenth at the different location of a 

span. Fig. 3 and Fig. 4 show the comparison of the 
strain distribution and sag distribution under uniform 

load and concentrated load. This figure presents the 

simulation results by using Ansys®. An conductor 

(LGJ-400/35) is applied with a concentrated load (at 

the point x=300), and with same amount of load but 

distributed uniformed along the transmission line. 

The parameters of LGJ400-35 conductor are shown 

in Table II. With the increased observability due to 

the distributed measurement, it is possible to predict 

the sag more accurately. Fig. 4 demonstrate an 

algorithm to estimate the sag with the distributed 

measured information. In this model, every section 

between two measurement points is approximately 

regarded as a transmission line governed by a 
catenary equation or reduced parabolic equation. 

Since the power transmission line is flexible with 

certain high rigidity, such dealment is resonable. The 

sags of the whole transmission line are evaluated 

with a series of catenary equations or reduced 

parabolic equations. Evaluation shows that a point on 

the transmission line does not move much along 

horizontal direction (i.e., x axis) even with the 

presence of sag. This is understandable because the 

stretching of the conductors is limited. Hence, the 

position of the sensors installed on transmission line 

can be assumed to be fixed with respect to the x axis. 
 

D. Managing Smart Homes Renewable Energy 

Integration of renewable resources are 

considered as one of the most important goals of the 

smart grid. Energy generated by means of solar 

power, wind power, etc., can be stored for future use 

by the home appliances or it can be sold to the grid. 

Our application manages the usage and flow of the 

energy, and keeps track of the smart home energy 

usage performance. In this application, we consider 

three cases: i) the home is using electricity from the 
grid even it might have energy on the storage 

devices, ii) the home quits using electricity from the 

grid and uses locally generated or stored energy, iii) 

the home sells electricity to the grid. In our 

application, the user may choose to do one of the 

above actions depending on the price of electricity 

and the amount of energy stored. The utility applies 

rates that vary with the time of day which is called as 

Time Of Use(TOU) billing. In our application, the 

best time to switch between any of the above three 

scenarios is chosen automatically. For the above 

scenarios, we assume the system has a storage device 
combined with the sensor node to get the current 

saved energy amount. The sensor node carry the flow 

management system to coordinate when to use the 

stored energy, furthermore it decides wether to sell 

electricity back to the grid or not, depending on the 

amount of energy already exists on the storage 

device. This system is fully automated, since the 

inhabitant might be out of the home and there is 

electricity in the storage device, so in this case the 

system could work independently and benefit from 

the energy without waiting for the user interaction. 
However the inhabitant might configure the system 

and change its default configuration by assigning the 

peak hours and amount of energy the house needs 

every day. 

In the default case, energy is supplied from 

the grid. When the renewable energy is stored in 

adequate amounts then energy can be supplied from 
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the storage device. On the other hand, when there is 

excess energy store, the user can sell electricity to the 

utility. The selection of the energy supply and the 

decision whether to consume or to sell the energy to 

the grid can be controlled by the application illustrate 

in Algorithm 2. The algorithm starts by asking the 

current time, if it does not belong to the peak hours 
already configured by the home owner, then the 

algorithm terminates, and the home keeps using the 

grid energy. Otherwise, the algorithm gets the 

amount of energy from the storage that exceeds the 

home needs for one day. If that amount is greater 

than zero, it is sold back to the grid and the home 

start using it needs from the storage device. 

Otherwise the home does not sell any amount back, 

and stop using the grid power, and the storage start 

supplying the home with the stored energy. The 

described system works in the storage device sensor 

node in the smart home to manage the usage of the 
electricity flow. Furthermore, the utility integrates 

this application to its customer management system, 

in order to take the amount of the renewable energy 

the house benefit. This information can be used to 

provide better rates for the customer who employs 

more renewable energy. 
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